Al Research – Criteo Al Lab

An Introduction to Machine Learning

Liva Ralaivola, Director of Al Research, Criteo Al Lab @CriteoAlLab, @LivaRalaivola

ΙΤΕΟ

1/35

INRAE Jan. 31st, 2022

Outline

Exordium -- captatio benevolentiae Al, Machine Learning, Deep Learning Machine Learning in our everyday life Core goal in supervised learning: generalization Pivotal Advances (non Deep things) Positioning Warm-up: a first handcrafted classifier Kernel methods: graceful methods Adaboost: combining weak learners Bandits: exploration vs. exploitation dilemma Pivotal advances (deep stuff) Perceptron: travelling in time (1958--) Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models Unsupervised / Generative models Two success stories AlphaGo (Silver et al. 2016) AlphaFold (Jumper et al, Nature 2021) Conclusion An Introduction to Machine Learning

Outline

Exordium -- captatio benevolentiae Al, Machine Learning, Deep Learning Machine Learning in our everyday life Core goal in supervised learning: generalization

Pivotal Advances (non Deep things)

Positioning

Warm-up: a first handcrafted classifier

Kernel methods: graceful methods

Adaboost: combining weak learners

Bandits: exploration vs. exploitation dilemma

Pivotal advances (deep stuff)

Perceptron: travelling in time (1958--)

Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models

Unsupervised / Generative models

Two success stories

AlphaGo (Silver et al. 2016) AlphaFold (Jumper et al, Nature 2021)

Conclusion

Al, Machine Learning, Deep Learning

Today: data, software, computing power

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

In the news... as of Oct. 10th, 2021

Annotation/Image decoding

(from Farabet et al, 2013)

P300 Speller

Vintage P300 Speller

(from Breaking bad)

Modern P300 Speller (pictures from A. Rakotomamonjy, video from Robo Doc)

ML-cashing Amazon shops

AlphaGo (Silver et al. 2016) Game 1

Game 2 AlphaGo (Black), Fan Hui (White) AlphaGo wins by resignation

Game 3 Fan Hui (Black), AlphaGo (White) AlphaGo wins by resignation

Core goal in supervised learning: generalization

(Trom Kerds Minist Tutorial

Generalization: from the training set to beyond

Design algorithms capable from pairs (measure, target), to create a predictors which, given a measure, estimates the corresponding target

Core goal in supervised learning: generalization... in practice

(from Train/Test Split and Cross Validation in Python)

(from Amazon AWS)

Outline

Exordium -- captatio benevolentiae Al, Machine Learning, Deep Learning Machine Learning in our everyday life Core goal in supervised learning: generalization

Pivotal Advances (non Deep things)

Positioning Warm-up: a first handcrafted classifier Kernel methods: graceful methods Adaboost: combining weak learners Bandits: exploration vs. exploitation dilemma

Pivotal advances (deep stuff) Perceptron: travelling in time (1958--) Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models Unsupervised / Generative models

Two success stories

AlphaGo (Silver et al. 2016) AlphaFold (Jumper et al, Nature 2021) opclusion

Positioning

V. Vapnik sets, at the end of the 70's, the mathematical basis of machine/statistical learning, at the intersection of computer science, statistics, and optimization

"ML is the study of computer algorithms that improve automatically through experience."

T. Mitchell, 1997

13 / 35

- \blacktriangleright u, v, w, c are vectors
- \blacktriangleright w = u v (red arrows)

$$\blacktriangleright \mathbf{c} = \frac{1}{2}(\mathbf{u} + \mathbf{v})$$

 $\blacktriangleright \text{ Here: } 0 < \lambda < 1$

Inner product $\langle\cdot,\cdot\rangle:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$

• symmetric: $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$

$$\blacktriangleright \text{ bilinear: } \langle \lambda \mathbf{u}_1 + \gamma \mathbf{u}_2, \mathbf{v} \rangle = \lambda \langle \mathbf{u}_1, \mathbf{v} \rangle + \gamma \langle \mathbf{u}_2, \mathbf{v} \rangle$$

- positive: $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$
- definite: $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Rightarrow \mathbf{u} = 0$

Inner product

- provides \mathcal{X} with a structure
- can be viewed as a 'similarity'
- \blacktriangleright defines a norm $\|\cdot\|$ on $\mathcal{X}{:}~\|\mathbf{u}\|=\sqrt{\langle \mathbf{u},\mathbf{u}\rangle}$

$\ln \, \mathbb{R}^2$

$$\blacktriangleright \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} : \ \langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2$$

 $\begin{array}{l} \blacktriangleright \ \langle {\bf u}-{\bf v},{\bf e}\rangle>0:\ {\bf u}-{\bf v} \ \text{and} \ {\bf e} \ \text{point to the 'same direction'} \\ \ \blacktriangleright \ \langle {\bf u}-{\bf v},{\bf f}\rangle=0:\ {\bf u}-{\bf v} \ \text{and} \ {\bf f} \ \text{are orthogonal} \end{array}$

 $\mathbf{v} \langle \mathbf{u} - \mathbf{v}, \mathbf{g} \rangle < 0$: $\mathbf{u} - \mathbf{v}$ and \mathbf{g} point to 'opposite directions' An Introduction to Machine Learning

14 / 35

Decision function

Classify points x according to which of the two class means \mathbf{c}^+ or \mathbf{c}^- is closer:

- \blacktriangleright for $x\in \mathcal{X},$ it is sufficient to take the sign of the inner product between w and x-c
- ▶ if $h(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \mathbf{c} \rangle$, we have the classifier $f(\mathbf{x}) = \operatorname{sign}(h(\mathbf{x}))$
- \blacktriangleright the (dotted) hyperplane (H), of normal vector w, is the decision surface

On evaluating $h(\mathbf{x})$

$$egin{aligned} h(\mathbf{x}) &= \langle \mathbf{w}, \mathbf{x} - \mathbf{c}
angle &= \langle \mathbf{w}, \mathbf{x}
angle - \langle \mathbf{w}, \mathbf{c}
angle &= \dots \ &= \sum_{i=1,\dots,m} lpha_i \langle \mathbf{x}_i, \mathbf{x}
angle + b, & ext{with } b ext{ a real constant} \end{aligned}$$

Inner products are sufficient (remember that)

Kernel methods: graceful methods

Silk methods

- Thereotical guarantees
- Convex optimization
- Nonlinearity handled through the kernel trick
- Success stories: structured data classification, ranking, scoring, theory

Kernel methods: graceful methods

Kernelizing the handcrafted classifier

 $h(\cdot) = \sum_{i=1,...,m} \alpha_i \langle \mathbf{x}_i, \cdot \rangle + b$ simply turns into

$$h(\mathbf{x}) = \sum_{i=1,...,m} \alpha_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b$$
, with b a real constant

where $k(;\cdot)$ has replaced $\langle \cdot, \cdot \rangle$ and computes an inner product on the nonlinear embedding of its arguments

Example: 2nd degree polynomial kernel

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$. Initialize: $D_1(i) = 1/m$ for i = 1, ..., m. For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Get weak hypothesis $h_t: \mathscr{X} \to \{-1, +1\}$.
- Aim: select *h_t* with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right).$
- Update, for $i = 1, \ldots, m$:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

(from Freund and Schapire, 1997, 2012)

(from Raschka, https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html)

(from Raschka, https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html)

- Algorithmic simplicity, effectiveness
- Theoretical results
- Gödel price 2003

(from Raschka, https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html) Find an illustrative example of Adaboost running

Bandits: exploration vs. exploitation dilemma

How to make the best use of your budget and bet?

Features

- Problem easy to pose, many variations
- Exploration/exploitation dilemma
- Success stories: ad placement, recommendation, Go

Outline

Exordium -- captatio benevolentiae
AI, Machine Learning, Deep Learning
Machine Learning in our everyday life
Core goal in supervised learning: generalization
Pivotal Advances (non Deep things)
Positioning
Warm-up: a first handcrafted classifier
Kernel methods: graceful methods
Adaboost: combining weak learners
Bandits: exploration vs. exploitation dilemma

Pivotal advances (deep stuff) Perceptron: travelling in time (1958--) Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models Unsupervised / Generative models

Two success stories AlphaGo (Silver et al. 2016) AlphaFold (Jumper et al, Nature 2021) Conclusion

Perceptron, binary case (Rosenblatt, 1958)

Biological motivations

- Learning systems made of several simple computational units connected to each other
- Memory capacity / plasticity of these systems

Perceptron: a linear classifier, $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$

Perceptron, binary case (Rosenblatt, 1958)

Biological motivations

- Learning systems made of several simple computational units connected to each other
- Memory capacity / plasticity of these systems

Perceptron: a linear classifier, $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$

- ▶ Classifier parameters: $\mathbf{w} \in \mathbb{R}^d$
- Prediction of the classifier: $f(\mathbf{x}) = \text{sign} \langle \mathbf{w}, \mathbf{x} \rangle$
- Question: how to learn w from observations?

Perceptron, binary case (Rosenblatt, 1958)

Biological motivations

- Learning systems made of several simple computational units connected to each other
- Memory capacity / plasticity of these systems

Algorithm: $\mathcal{D} = \{(X_n, Y_n)\}_{n=1}^N$

$$\begin{split} \mathbf{w} &\leftarrow \mathbf{0} \\ \text{while there exists } (X_n, Y_n): \ Y_n \langle \mathbf{w}, X_n \rangle \leq 0 \ \text{do} \\ \mathbf{w} &\leftarrow \mathbf{w} + Y_n X_n \\ \text{end while} \end{split}$$

Perceptron: a few results

Theorem (Bound on the number of updates, Novikoff, 1962)

If there exist $\gamma > 0$, \mathbf{w}^* , $\|\mathbf{w}^*\| = 1$, $\|X_n\| \le R, \forall n = 1, ..., N$, et $Y_n \langle \mathbf{w}^*, X_n \rangle \ge \gamma$ then the Perceptron algorithm converges in less than R^2/γ^2 updates

Theorem (Generalization error, Vapnik et Chevonenkis, 1979) $\forall \mathbf{w} \in \mathbb{R}^d$: with high probability

$$R(w) \leq \hat{R}(\mathbf{w}, \mathcal{D}) + \tilde{O}\left(\sqrt{\frac{d}{n}}\right)$$

Multilayer Perceptron, Convolutional Networks

Up until the 90's

- Feedforward networks
- Gradient backpropagation (Rumelhart et al. 86)
- Preferred task: multiclass classification

Multilayer Perceptron, Convolutional Networks

(By Aphex34 - Own work, CC BY-SA 4.0, Wikimedia CNN)

Since 2005

- Feedforward networks, recurrent networks
- Backpropagation (and autodiff), layerwise learning, computational power
- Tasks: almost everything (provided there is data)

But, more importantly

- Libraries: Tensorflow, Theano, Keras, Torch, Caffe (see là)
- Hardware: GPU, TPU (Tensor Processing Units)

Data...

Deep Learning: Hands-on

Visualization

Keras Mnist Tutorial

Dozens of examples can be found on Keras code examples page

Unsupervised Deep Learning: auto-encoders

(From An introduction to Autoencoders)

Code: https://www.tensorflow.org/tutorials/generative/autoencoder

Unsupervised Deep Learning: auto-encoders

Reconstructed Images

(From Applied Deep Learning - Part 3: Autoencoders)

Unsupervised Deep Learning: auto-encoders

(From Building Autoencoders in Keras)

Unsupervised/Generative Deep Learning: Variational Auto-Encoders (Kingma and Welling, 2014)

(From Wikipedia VAE page)

Code: https://deeplearning.neuromatch.io/tutorials/W2D5_ GenerativeModels/student/W2D5_Tutorial1.html

Generative Deep Learning: GANs, (Goodfellow and al, 2014

(From GANs from Scracth)

Generative Deep Learning: GANs, (Goodfellow and al, 2014

(From NVidia Video)

Models Zoo

Discove	nodels.			
	Browse Frameworks	Browse Categories		
Hiter models OpenPose 14800 OpenPose represents the first real-time	Mask I This is an implement	R-CNN 504	pytorch- CycleGAN-and- pix2pix	
multi-person system to jointly detect human body, hand, and facial keypoints (in total 130 keypoints) on single images. Caffe	CNN on Pythor TensorFlow. The I bounding boxes a masks for each insta the image. It's ba Pyramid Netwo	3, Keras, and model generates nd segmentation ince of an object in ised on Feature rk (FPN) and a	PyTorch implementation for both unpaired and paired image-to-imag translation. PyTorch	

https://modelzoo.co

Outline

Al, Machine Learning, Deep Learning Machine Learning in our everyday life Warm-up: a first handcrafted classifier Kernel methods: graceful methods Two success stories

AlphaGo (Silver et al. 2016) AlphaFold (Jumper et al, Nature 2021)

Conclusion

AlphaGo (Silver et al. 2016)

https://deepmind.com/blog/alphago-zero-learning-scratch/

AlphaGo (Silver et al. 2016)

(From AlphaGo Netflix (Deepmind youtube))

AlphaFold (Jumper et al, Nature 2021)

Median Free-Modelling Accuracy

(From AlphaFold: a solution to a 50-year-old grand challenge in biology) An Introduction to Machine Learning 31 / 35

AlphaFold (Jumper et al, Nature 2021)

(From Jumper et al, Nature, 2021)

AlphaFold (Jumper et al, Nature 2021)

A notebook to play around

co	AlphaFold2.ipynb Fichier Modifier Affichage Insérer Exécution Outils Aide	Partager	٥	Connexior	n
:=	+ Code + Texte & Copier sur Drive	Connecter 👻	/ Mo	dification	^
Q ↓ (x)	ColabFold: AlphaFold2 using MMseqs2 Easy to use protein structure and complex prediction using <u>AlphaFold2</u> and <u>AlphaFold2</u> multimer. Sequence alignments/templates are generated through <u>MMseqs2</u> and <u>Hitsearch</u> . For more details, see <u>bottom</u> of the notebook, checkout the <u>ColabFold BitHub</u> and read our manuscript: Mirdita M. Schütze K. Mortweiki Y. Heo L. Ovchinnikov S. Steineger M. ColabFold - Making protein folding accessible to all hordwr. 2021. Old versions: <u>v1.0, v1.1, v1.2</u>	<u>^</u>	4 69		1
	Input protein sequence(s), then hit Runtime -> Run all query_sequence: "PIAQIHILEGRSDEQKETLIREVSEAISRSLDAPLTSVRVIITEMAKGHFGIGGELASK Use It to specify interprotein chainbreaks for modeling complexes (supports homo- and hetro-oligomers). For example PLSK/PLSK f jobname: "test use_amber: use_templates: save_to_google_drive:	or a mono-dimer			
	If the save_to_google_drive option was selected, the result zip will be uploaded to your Google Drive Advanced settings				
	(From AlphaFold Notebook)				

Outline

Al, Machine Learning, Deep Learning Machine Learning in our everyday life Warm-up: a first handcrafted classifier Kernel methods: graceful methods Perceptron: travelling in time (1958--)

AlphaFold (Jumper et al, Nature 2021)

Conclusion

Machine Learning: a Variety of Problems/Mixes

Many application fields

- Computer vision
- NLP
- Robotics
- Advertising, recommendation systems
- Games (Go, chess, poker)
- Biology
- …

Many problems

- Algorithmics
- Statistics
- Modelling
- ... and beyond

Conclusion

Machine Learning: a field in itselft

- A vivid branch of Al
- At the crossroads of computer science and mathematics
- Ever-growing community (from applied research to more fundamental one)

Machine Learning is ubiquituous

- At the heart of data science
- In many real-world applications
- ML at the time of revisiting other well-established fields of research

Example of future problems

- ML and small datasets: prior knowledge, active learning, feature selection
- ML & other fields: game theory, cryptography, biology, physics, law...

Hot AI topics (personal take)

Revisit classical fields from the Machine Learning perspective

- Privacy-Preserving ML: MLize encryption mechanisms, distributed computing
- Repeated Mechanism Design: MLize game theory, deal with coopetitive and competitive agents
- Green ML: hardware-aware methods, communication-sensitive methods...